Data Streams: Where to Go? PODS 11, Tutorial

S. Muthu Muthukrishnan

▶ A shows B numbers 1,..., n but in a permuted order and leaves out one of the numbers.

- ▶ A shows B numbers 1,..., n but in a permuted order and leaves out one of the numbers.
- \blacktriangleright B has to determine the missing number.

- ▶ A shows B numbers 1,..., n but in a permuted order and leaves out one of the numbers.
- ightharpoonup B has to determine the missing number.
- Key: B has only $2 \log n$ bits.

- ▶ A shows B numbers 1,..., n but in a permuted order and leaves out one of the numbers.
- \triangleright B has to determine the missing number.
- ▶ Key: B has only $2 \log n$ bits.
- ▶ Solution:

B maintains the running sum s of numbers seen.

Missing number is $\frac{n(n+1)}{2} - s$.

- ▶ A sees items i_1, i_2, \ldots arrive in a stream.
- ▶ A has to maintain the median m_i of the items i_1, \ldots, i_l .

- ▶ A sees items i_1, i_2, \ldots arrive in a stream.
- ▶ A has to maintain the median m_j of the items i_1, \ldots, i_j .
- ▶ Each i_j generated independently and randomly from some unknown distribution \mathcal{D} over integers [1, n].

- ▶ A sees items i_1, i_2, \ldots arrive in a stream.
- ▶ A has to maintain the median m_j of the items i_1, \ldots, i_j .
- ▶ Each i_j generated independently and randomly from some unknown distribution \mathcal{D} over integers [1, n].
- ▶ Key: A is allowed to store only one word of memory (of $\log n$ bits).

- ▶ A sees items i_1, i_2, \ldots arrive in a stream.
- ▶ A has to maintain the median m_j of the items i_1, \ldots, i_j .
- ▶ Each i_j generated independently and randomly from some unknown distribution \mathcal{D} over integers [1, n].
- ▶ Key: A is allowed to store only one word of memory (of $\log n$ bits).

▶ Solution. Maintain μ_j . If $i_{j+1} > \mu_j$, $\mu_{j+1} \leftarrow \mu_j + 1$. If $i_{j+1} < \mu_j$, $\mu_{j+1} \leftarrow \mu_j - 1$.

A Basic Problem: Indexing

▶ Imagine a virtual array $F[1 \cdots n]$,

A Basic Problem: Indexing

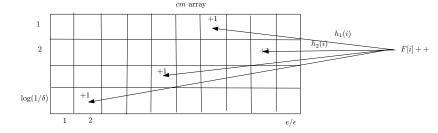
- ▶ Imagine a virtual array $F[1 \cdots n]$,
- Updates: F[i] + +, F[i] -.

A Basic Problem: Indexing

- ▶ Imagine a virtual array $F[1 \cdots n]$,
- Updates: F[i] + +, F[i] -.
- Query: F[i] = ?.

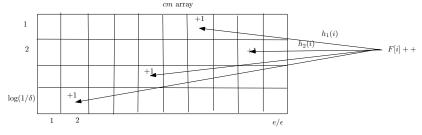
Count-Min Sketch

- ▶ For each update F[i] + +,
 - for each $j = 1, ..., \log(1/\delta)$, update $cm[h_j(i)] + +$.



Count-Min Sketch

- ▶ For each update F[i] + +,
 - for each $j = 1, ..., \log(1/\delta)$, update $cm[h_j(i)] + +$.



▶ Estimate $\tilde{F}(i) = \min_{j=1,...,\log(1/\delta)} cm[h_j(i)].$

Count-Min Sketch

- ▶ Claim: $F[i] \leq \tilde{F}[i]$.
- ullet Claim: With probability at least $1-\delta$, $ilde{F}[i] \leq F[i] + arepsilon \sum_{j \neq i} F[j].$
- ▶ Space used is $O(\frac{1}{\varepsilon}\log(\frac{1}{\delta})$.
- ► Time per update is $O(\log(\frac{1}{\delta}))$. Indep of n.

G. Cormode and S. Muthukrishnan: An improved data stream summary: count-min sketch and its applications. *Journal of Algorithms*.

Count-Min Sketch: The Proof

• With probability at least $1 - \delta$,

$$ilde{F}[i] \leq F[i] + arepsilon \sum_{j
eq i} F[j].$$

Count-Min Sketch: The Proof

▶ With probability at least $1 - \delta$,

$$ilde{F}[i] \leq F[i] + arepsilon \sum_{j
eq i} F[j].$$

▶ $X_{i,j}$ is the expected contribution of F[j] to the bucket containing i, for any h.

$$E(X_{i,j}) = rac{arepsilon}{e} \sum_{j
eq i} F[j].$$

Count-Min Sketch: The Proof

▶ With probability at least $1 - \delta$,

$$ilde{F}[i] \leq F[i] + arepsilon \sum_{j
eq i} F[j].$$

▶ $X_{i,j}$ is the expected contribution of F[j] to the bucket containing i, for any h.

$$E(X_{i,j}) = rac{arepsilon}{e} \sum_{i
eq i} F[j].$$

▶ Consider $\Pr(\tilde{F}[i] > F[i] + \epsilon \sum_{j \neq i} F[j])$:

$$egin{array}{lll} \Pr() &=& \Pr(orall j, F[i] + X_{i,j} > F[i] + arepsilon \sum_{j
eq i} F[j]) \ &=& \Pr(orall j, X_{i,j} \geq eE(X_{i,j})) \end{array}$$

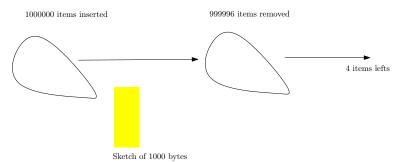
$$< e^{-\log(1/\delta)} = \delta$$

Improve Count-Min Sketch?

▶ Index Problem:

- ▶ A has n long bitstring and sends messages to B who wishes to compute the ith bit.
- ▶ Needs $\Omega(n)$ bits of communication.
- ▶ Reduction of estimating F[i] in data stream model.
 - $I[1\cdots 1/(2\varepsilon)]$
 - ▶ $I[i] = 1 \to F[i] = 2$
 - ▶ $I[i] = 0 \rightarrow F[i] = 0$; $F[0] \leftarrow F[0] + 2$.
 - Estimating F[i] to $\varepsilon||F|| = 1$ accuracy reveals I[i].

Count-Min Sketch, The Challenge



▶ Recovering F[i] to $\pm 0.1|F|$ accuracy will retrieve each item precisely.

- ▶ Solves many problems in the best possible/known bounds:
 - ▶ Data Mining: heavy hitters, heavy hitter differences.
 - ▶ Signal processing: Compressed sensing.
 - ▶ Statistics: Histograms, Wavelets, Clustering, Least squares.

- ▶ Solves many problems in the best possible/known bounds:
 - ▶ Data Mining: heavy hitters, heavy hitter differences.
 - ▶ Signal processing: Compressed sensing.
 - ▶ Statistics: Histograms, Wavelets, Clustering, Least squares.
- ▶ Applications to other CS/EE areas:
 - ▶ NLP, ML, Password checking.

- ▶ Solves many problems in the best possible/known bounds:
 - ▶ Data Mining: heavy hitters, heavy hitter differences.
 - ▶ Signal processing: Compressed sensing.
 - ▶ Statistics: Histograms, Wavelets, Clustering, Least squares.
- ▶ Applications to other CS/EE areas:
 - ▶ NLP, ML, Password checking.
- Systems, code, hardware.

- ▶ Solves many problems in the best possible/known bounds:
 - ▶ Data Mining: heavy hitters, heavy hitter differences.
 - ▶ Signal processing: Compressed sensing.
 - ▶ Statistics: Histograms, Wavelets, Clustering, Least squares.
- ▶ Applications to other CS/EE areas:
 - ▶ NLP, ML, Password checking.
- Systems, code, hardware.

Wiki: http://sites.google.com/site/countminsketch/

Summary

- ▶ Broken the premise that data has to be
 - captured,
 - stored,
 - communicated,

analyzed in entirety.

Summary

- ▶ Broken the premise that data has to be
 - captured,
 - ▶ stored,
 - communicated,

analyzed in entirety.

Polynomial time/space theory -> sublinear theory Nyquist sampling -> SubNyquist sampling

- ▶ Raghu asked: what can you do with one pass?
 - ▶ Dynamic data structures, with fast update times.

- ▶ Raghu asked: what can you do with one pass?
 - ▶ Dynamic data structures, with fast update times.
- ▶ Gibbons and Matias abstract synopsis data structures
 - ▶ Can't simulate a stack!

- Raghu asked: what can you do with one pass?
 - ▶ Dynamic data structures, with fast update times.
- ▶ Gibbons and Matias abstract synopsis data structures
 - ▶ Can't simulate a stack!
- ▶ Alon, Matias and Szegedy used limited independence.
 - ▶ What does frequency moment got to do with databases?

- ▶ Raghu asked: what can you do with one pass?
 - ▶ Dynamic data structures, with fast update times.
- ▶ Gibbons and Matias abstract synopsis data structures
 - Can't simulate a stack!
- ▶ Alon, Matias and Szegedy used limited independence.
 - ▶ What does frequency moment got to do with databases?
- ► George Varghese argues high speed memory is a constraint in IP packet analyses.
 - ▶ Who needs to analyze IP packet data?

- ▶ Raghu asked: what can you do with one pass?
 - ▶ Dynamic data structures, with fast update times.
- ▶ Gibbons and Matias abstract synopsis data structures
 - Can't simulate a stack!
- ▶ Alon, Matias and Szegedy used limited independence.
 - ▶ What does frequency moment got to do with databases?
- ► George Varghese argues high speed memory is a constraint in IP packet analyses.
 - ▶ Who needs to analyze IP packet data?
- ▶ Observation: $1/\varepsilon^2$ space to give ε accuracy. Prohibitive.

Specialized streaming systems:

- ▶ Gigascope at AT&T for IP traffic analysis.
 - ► Two level archietecture. Uses count-min(A) + count-min(B) = count-min(A + B).

Specialized streaming systems:

- ▶ Gigascope at AT&T for IP traffic analysis.
 - Two level archietecture.
 Uses count-min(A) + count-min(B) = count-min(A + B).
- CMON at Sprint for IP traffic analysis.
 - ► Hash and parallelize architecture.

 Uses count-min sketch to skip over parts of the stream.

Specialized streaming systems:

- ▶ Gigascope at AT&T for IP traffic analysis.
 - ▶ Two level archietecture.
 Uses count-min(A) + count-min(B) = count-min(A + B).
- CMON at Sprint for IP traffic analysis.
 - ► Hash and parallelize architecture.

 Uses count-min sketch to skip over parts of the stream.
- ▶ Sawzall at Google for log data analysis
 - ► Mapreduce-based.

 Uses count-min sketch to decrease communication.

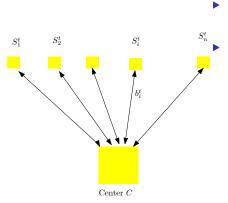
Specialized streaming systems:

- ▶ Gigascope at AT&T for IP traffic analysis.
 - ▶ Two level archietecture.
 Uses count-min(A) + count-min(B) = count-min(A + B).
- CMON at Sprint for IP traffic analysis.
 - ► Hash and parallelize architecture.

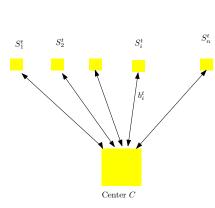
 Uses count-min sketch to skip over parts of the stream.
- Sawzall at Google for log data analysis
 - Mapreduce-based.
 Uses count-min sketch to decrease communication.

Q: General purpose streaming systems?

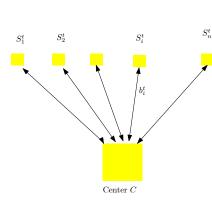
Some Research Directions



- \triangleright S_i^t is the set of items seen by sensor i upto time t.
- S_t is the multiset union of S_i^t 's.



- \triangleright S_i^t is the set of items seen by sensor i upto time t.
- S_t is the multiset union of S_i^t 's.
- ▶ Problem:
 - If $|S_t| > \tau$, output 1.
 - if $|S_t| < \tau \varepsilon$, output 0.



- \triangleright S_i^t is the set of items seen by sensor i upto time t.
- S_t is the multiset union of S_i^t 's.
- ▶ Problem:
 - If $|S_t| > \tau$, output 1.
 - if $|S_t| < \tau \varepsilon$, output 0.
- Say b_i^t is total number of bits sent b/w i and C
- ightharpoonup Minimize $\sum_i b_i^t$.

▶ When sensor sees $O(\frac{\varepsilon^2 \tau}{k})$ elements, sends a bit w.p $\frac{1}{k}$ to center.

- ▶ When sensor sees $O(\frac{\varepsilon^2 \tau}{k})$ elements, sends a bit w.p $\frac{1}{k}$ to center.
- ▶ Center outputs 1 when $O(1/\varepsilon^2)$ bits received.

- ▶ When sensor sees $O(\frac{\varepsilon^2 \tau}{k})$ elements, sends a bit w.p $\frac{1}{k}$ to center.
- ▶ Center outputs 1 when $O(1/\varepsilon^2)$ bits received.
- ▶ $O(\frac{1}{\epsilon^2}\log(\frac{1}{\delta}))$ bits suffice with prob of success $1-\delta$.
- ▶ Independent of k.

Algorithms for distributed functional monitoring. Cormode, Muthukrishnan, Yi. SODA 08.

1. Distributed, Continual Monitoring: Summary

- Statistics: Frequency moments, Distinct counts.
- ▶ Optimization: Clustering.
- Signal processing: Compressed sensing.

Need a fuller theory.

Connections to Slepian-Wolf, network coding.

2. Probabilistic Streams

Each stream update is a random variable X_i , $1 \le i \le n$, $X_i \in \{0, 1\}$, identically distributed.

2. Probabilistic Streams

- Each stream update is a random variable X_i , $1 \le i \le n$, $X_i \in \{0, 1\}$, identically distributed.
- ► The query is to estimate $\Pr[\sum_i X_i < c]$.

Berry-Esseen Theorem

Let X_1, \ldots, X_n be i.i.d. random variables with

•
$$E(X_i) = 0, E(X^2) = \sigma^2$$
, and $E(|X|^3) = \rho$.

Let $Y_n = \sum_i X_i/n$ with

- F_n the cdf of $Y_n \sqrt{n}/\sigma$
- ϕ the cdf of the std normal dist.

Then there exists a positive C such that for all x and n,

$$|F_n(x)-\phi(x)| \leq rac{C
ho}{\sigma^3\sqrt{n}}.$$

• We have $\sum_i X_i \le c$ implies $Y_n = \sum_i X_i / n \le c / n$.

- We have $\sum_i X_i \le c$ implies $Y_n = \sum_i X_i/n \le c/n$.
- ► Then $\Pr(\sum_i X_i \le c) = F_n(c/\sigma\sqrt{n}).$

- ▶ We have $\sum_i X_i \le c$ implies $Y_n = \sum_i X_i / n \le c / n$.
- ► Then $\Pr(\sum_i X_i \le c) = F_n(c/\sigma\sqrt{n}).$
- ► This can be approximated by $\phi(c/\sigma\sqrt{n})$.

- ▶ We have $\sum_i X_i \le c$ implies $Y_n = \sum_i X_i / n \le c / n$.
- ► Then $\Pr(\sum_i X_i \le c) = F_n(c/\sigma\sqrt{n}).$
- ► This can be approximated by $\phi(c/\sigma\sqrt{n})$.
- To finish up. Estimate σ and its impact on overall error. Extend to more general X_i's.

- ▶ Input is a stochastic stream $X_1, ..., X_n$, each X_i is drawn from known distribution D. n is known.
- ▶ Problem: Stop at input t and output X_t .

- ▶ Input is a stochastic stream $X_1, ..., X_n$, each X_i is drawn from known distribution D. n is known.
- ▶ Problem: Stop at input t and output X_t .
- ▶ Goal: maximize X_t . Formally,

$$\max rac{E(X_t)}{E(\mathit{OPT}) = E(\max_i X_i)}$$

- ▶ Input is a stochastic stream X_1, \ldots, X_n , each X_i is drawn from known distribution D. n is known.
- ▶ Problem: Stop at input t and output X_t .
- ▶ Goal: maximize X_t . Formally,

$$\max rac{E(X_t)}{E(\mathit{OPT}) = E(\max_i X_i)}$$

- Observe:
 - ▶ Can a priori look at the dist of $\max_i X_i$.
 - ▶ Not the same as finding $\max_i X_i$.

3. Stochastic Streams Contd

- ▶ Algorithm:
 - $X^* = \max_i X_i$.
 - m: median of X^* , ie., $\Pr(X^* < m) \approx 1/2$.
 - ▶ τ is the smallest t such that $X_t > m$. τ is the answer.

3. Stochastic Streams Contd

- ▶ Algorithm:
 - $X^* = \max_i X_i$.
 - ▶ m: median of X^* , ie., $\Pr(X^* < m) \approx 1/2$.
 - ▶ τ is the smallest t such that $X_t > m$.
 - τ is the answer.
- Algorithm finds t such that $E(X_t)/E(OPT) \ge 1/2$. Prophet inequality.

Many basic problems on stochastic streams still open.

Conclusions

- ► Talk summary:
 - ▶ Indexing problem.
 - count-min sketch and applications.
 - classical streaming.
- ▶ New directions:
 - ▶ Distributed, continual.
 - ▶ Probabilistic.
 - Stochastic.

Conclusions

- ► Talk summary:
 - ▶ Indexing problem.
 - count-min sketch and applications.
 - classical streaming.
- ▶ New directions:
 - ▶ Distributed, continual.
 - ▶ Probabilistic.
 - Stochastic.

Comments:

 Need convincing systems and applications to motivate new directions.

Conclusions

- ► Talk summary:
 - ▶ Indexing problem.
 - count-min sketch and applications.
 - classical streaming.

▶ New directions:

- ▶ Distributed, continual.
- ▶ Probabilistic.
- ▶ Stochastic.

Comments:

- Need convincing systems and applications to motivate new directions.
- ► Left out: window streams, rich queries and data, MapReduce