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Familiar Puzzle: Missing Number

» A shows B numbers 1,...,n but in a
permuted order and leaves out one of
the numbers.

» B has to determine the missing number.

b » Key: B has only 2log n bits.

» Solution:
B maintains the running sum s of

numbers seen.

n(n+l)
2

Missing number is s.
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A New Puzzle: One Word Median

» A sees items 1, %5, ... arrive in a stream.

» A has to maintain the median m; of the items 17,...,1;.

» Each 1; generated independently and randomly from some
unknown distribution D over integers [1, n].

» Key: A is allowed to store only one word of memory (of
log n bits).

» Solution. Maintain u;.
If 441 > p, i1 < py + 1.
If 9500 < gy, i1 < pj — 1.
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» Imagine a virtual array

» Updates: F[z] + +,
Fl1] — —.




Count-Min Sketch

» For each update F[i] + +,
» for each j = 1,...,log(1/6), update cm[h;(z)] + +.
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Count-Min Sketch

» For each update F[i] + +,
» for each j = 1,...,log(1/6), update cm[h;(z)] + +.

cm array
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» Estimate Z:"(z) =min;_j, log(1/5) cm[hi(2)].



Count-Min Sketch

» Claim: F[i] < F'[4).

L EEENTLE ) » Claim: With probability at least 1 — 6,
4 TAXYAPOMOZ 4! | -

KAl TA YTIOAOINAS

G Fli) < Fli]+ €32, Fli].

» Space used is O(Z log(3).

» Time per update is O(log(3)).
Indep of n.

G. Cormode and S. Muthukrishnan: An improved data stream sum-
mary: count-min sketch and its applications. Journal of Algorithms.
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Count-Min Sketch: The Proof
» With probability at least 1 — 4,

Fi] < Flil+e)_ Flj].
j#i

» X, ; is the expected contribution of F'[j] to the bucket
containing 2, for any h.

B(Xiy) = 2> Fljl
JFi

» Consider Pr(F[i] > F[i| +¢ iz FlII):
Pr() = Pr(vj, Fli]+ Xi; > Fli]+¢e)_ F[j])

i
= Pr(vy, Xi; > eE(X;;))

< e los(1/é) — 5



Improve Count-Min Sketch?

» Index Problem:
» A has n long bitstring and sends messages to B who wishes
to compute the th bit.
» Needs Q(n) bits of communication.

» Reduction of estimating F[i] in data stream model.
» I[1---1/(2€)]
» I[i]=1— Fli] =2
» I[i] =0 — F[i] =0; F[0] + F'[0] + 2.
» Estimating F'[7] to ¢||F|| = 1 accuracy reveals I[3].



Count-Min Sketch, The Challenge

1000000 items inserted 999996 items removed

- 0> R EE—
4 items lefts

Sketch of 1000 bytes
» Recovering F[i] to £0.1|F| accuracy will retrieve each item
precisely.
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» Solves many problems in the best possible/known bounds:
» Data Mining: heavy hitters, heavy hitter differences.
» Signal processing: Compressed sensing.
» Statistics: Histograms, Wavelets, Clustering, Least squares.
» Applications to other CS/EE areas:
» NLP, ML, Password checking.

» Systems, code, hardware.

Wiki: http://sites.google.com/site/countminsketch/ ‘
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Summary

» Broken the premise that
data has to be

» captured,
» stored,
» communicated,

analyzed in entirety.

Polynomial time/space theory -> sublinear theory
Nyquist sampling -> SubNyquist sampling
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What does this got to do with data streams?
Some My-story

» Raghu asked: what can you do with one pass?
» Dynamic data structures, with fast update times.
» Gibbons and Matias abstract synopsis data structures
» Can’t simulate a stack!
» Alon, Matias and Szegedy used limited independence.
» What does frequency moment got to do with databases?

» George Varghese argues high speed memory is a constraint
in IP packet analyses.

» Who needs to analyze IP packet data?

» Observation: 1/e2 space to give € accuracy. Prohibitive.
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Some Successful Streaming Systems

Specialized streaming systems:
» Gigascope at AT&T for IP traffic analysis.
» Two level archietecture.
Uses count-min(A) + count-min(B) = count-min(A + B).
» CMON at Sprint for IP traffic analysis.

» Hash and parallelize architecture.
Uses count-min sketch to skip over parts of the stream.

» Sawzall at Google for log data analysis

» Mapreduce-based.
Uses count-min sketch to decrease communication.

‘ Q: General purpose streaming systems?




Some Research Directions

IIOBITHZ
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1: Distributed, continual monitoring

A\

Center C'

=

S! is the set of items seen
by sensor ¢ upto time ¢.
S;¢ is the multiset union of
S,
Problem:

» If |Sy| > T, output 1.

» if |S;| < T — ¢, output 0.
Say bf is total number of
bits sent b/w ¢ and C

. . . t
Minimize }; b;.
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1: Distributed, continual monitoring

2 .
» When sensor sees O(%;") elements, sends a bit w.p % to
center.

» Center outputs 1 when O(1/e?) bits received.
> O(si2 log(3)) bits suffice with prob of success 1 — 6.
» Independent of k.

Algorithms for distributed functional monitoring. Cormode,
Muthukrishnan, Yi. SODA 08.




1. Distributed, Continual Monitoring: Summary

FEP2 HONO AYO
TMOIHMATA: TO ENA EINAI
TO "APNAKI AZMNPO KAI
TIAXY" KAI TO AAAO
AEN EINALY

» Statistics: Frequency
moments, Distinct counts.

» Optimization: Clustering.

» Signal processing:
Compressed sensing.

Need a fuller theory.
Connections to Slepian-Wolf, network coding.
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2. Probabilistic Streams

» Each stream update is a
random variable Xj;,
1<1<n, X; €{0,1},
identically distributed.

» The query is to estimate
Pr[37; Xi < cl.



Probabilistic Streams Contd

Berry-Esseen Theorem
Let Xi,...,X, beiid. random variables with
» E(X;)=0,E(X?) =02 and E(|X|?) = p.
Let Y, =Y, Xi/n with
» F, the cdf of Y,4/n/o
¢ the cdf of the std normal dist.
Then there exists a positive C such that for all z and n,

Cp
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Probabilistic Streams Contd

We have ), X; < c implies
Yy :EzXz/n < C/n‘

Then Pr(}°; X; < c) =
F.(c/o/n).

This can be approximated

by ¢(c/o/n).

To finish up. Estimate o
and its impact on overall
error. Extend to more
general X;’s.
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. Stochastic Streams

» Input is a stochastic stream Xj,..., X,, each X; is drawn
from known distribution D. n is known.

» Problem: Stop at input ¢ and output X;.
» Goal: maximize X;. Formally,

E(Xt)

X B(OPT) = E(max; X;)

» Observe:

» Can a priori look at the dist of max; X;.
» Not the same as finding max; X;.
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» 7 is the smallest ¢ such that X; > m.
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3. Stochastic Streams Contd

» Algorithm:
» X* = max; X;.
» m: median of X*, ie., Pr(X* < m) =~ 1/2.
» 7 is the smallest ¢ such that X; > m.
T is the answer.
» Algorithm finds ¢t such that E(X;)/E(OPT) > 1/2.
Prophet inequality.

Many basic problems on stochastic streams still open. ‘
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Conclusions

» Talk summary:
» Indexing problem.
» count-min sketch and
applications.
» classical streaming.

» New directions:

» Distributed, continual.
» Probabilistic.
» Stochastic.

» Comments:
» Need convincing systems and applications to motivate new
directions.
» Left out: window streams, rich queries and data,
MapReduce



