
Data Streams: Where to Go?
PODS 11, Tutorial

S. Muthu Muthukrishnan

Familiar Puzzle: Missing Number

I A shows B numbers 1; : : : ;n but in a
permuted order and leaves out one of
the numbers.

I B has to determine the missing number.

I Key: B has only 2 logn bits.

I Solution:
B maintains the running sum s of
numbers seen.
Missing number is n(n+1)

2 � s .

Familiar Puzzle: Missing Number

I A shows B numbers 1; : : : ;n but in a
permuted order and leaves out one of
the numbers.

I B has to determine the missing number.

I Key: B has only 2 logn bits.

I Solution:
B maintains the running sum s of
numbers seen.
Missing number is n(n+1)

2 � s .

Familiar Puzzle: Missing Number

I A shows B numbers 1; : : : ;n but in a
permuted order and leaves out one of
the numbers.

I B has to determine the missing number.

I Key: B has only 2 logn bits.

I Solution:
B maintains the running sum s of
numbers seen.
Missing number is n(n+1)

2 � s .

Familiar Puzzle: Missing Number

I A shows B numbers 1; : : : ;n but in a
permuted order and leaves out one of
the numbers.

I B has to determine the missing number.

I Key: B has only 2 logn bits.

I Solution:
B maintains the running sum s of
numbers seen.
Missing number is n(n+1)

2 � s .

A New Puzzle: One Word Median

I A sees items i1; i2; : : : arrive in a stream.
I A has to maintain the median mj of the items i1; : : : ; ij .

I Each ij generated independently and randomly from some
unknown distribution D over integers [1;n].

I Key: A is allowed to store only one word of memory (of
logn bits).

I Solution. Maintain �j .
If ij+1 > �j , �j+1 �j + 1.
If ij+1 < �j , �j+1 �j � 1.

A New Puzzle: One Word Median

I A sees items i1; i2; : : : arrive in a stream.
I A has to maintain the median mj of the items i1; : : : ; ij .

I Each ij generated independently and randomly from some
unknown distribution D over integers [1;n].

I Key: A is allowed to store only one word of memory (of
logn bits).

I Solution. Maintain �j .
If ij+1 > �j , �j+1 �j + 1.
If ij+1 < �j , �j+1 �j � 1.

A New Puzzle: One Word Median

I A sees items i1; i2; : : : arrive in a stream.
I A has to maintain the median mj of the items i1; : : : ; ij .

I Each ij generated independently and randomly from some
unknown distribution D over integers [1;n].

I Key: A is allowed to store only one word of memory (of
logn bits).

I Solution. Maintain �j .
If ij+1 > �j , �j+1 �j + 1.
If ij+1 < �j , �j+1 �j � 1.

A New Puzzle: One Word Median

I A sees items i1; i2; : : : arrive in a stream.
I A has to maintain the median mj of the items i1; : : : ; ij .

I Each ij generated independently and randomly from some
unknown distribution D over integers [1;n].

I Key: A is allowed to store only one word of memory (of
logn bits).

I Solution. Maintain �j .
If ij+1 > �j , �j+1 �j + 1.
If ij+1 < �j , �j+1 �j � 1.

A New Puzzle: One Word Median

I A sees items i1; i2; : : : arrive in a stream.
I A has to maintain the median mj of the items i1; : : : ; ij .

I Each ij generated independently and randomly from some
unknown distribution D over integers [1;n].

I Key: A is allowed to store only one word of memory (of
logn bits).

I Solution. Maintain �j .
If ij+1 > �j , �j+1 �j + 1.
If ij+1 < �j , �j+1 �j � 1.

A Basic Problem: Indexing

I Imagine a virtual array
F [1 � � �n],

I Updates: F [i] + +,
F [i]��.

I Query: F [i] =?.

A Basic Problem: Indexing

I Imagine a virtual array
F [1 � � �n],

I Updates: F [i] + +,
F [i]��.

I Query: F [i] =?.

A Basic Problem: Indexing

I Imagine a virtual array
F [1 � � �n],

I Updates: F [i] + +,
F [i]��.

I Query: F [i] =?.

Count-Min Sketch

I For each update F [i] + +,

I for each j = 1; : : : ; log(1=�), update cm [hj (i)] + +.

F [i] + +

h1(i)

h2(i)

1

2

log(1/δ)

1 2 e/ε

+1

+1

+1

+1

cm array

I Estimate ~F (i) = minj=1;:::;log(1=�) cm [hj (i)].

Count-Min Sketch

I For each update F [i] + +,

I for each j = 1; : : : ; log(1=�), update cm [hj (i)] + +.

F [i] + +

h1(i)

h2(i)

1

2

log(1/δ)

1 2 e/ε

+1

+1

+1

+1

cm array

I Estimate ~F (i) = minj=1;:::;log(1=�) cm [hj (i)].

Count-Min Sketch

I Claim: F [i] � ~F [i].

I Claim: With probability at least 1� �,
~F [i] � F [i] + "

P
j 6=i F [j].

I Space used is O(1
" log(

1
�).

I Time per update is O(log(1
�)).

Indep of n .

G. Cormode and S. Muthukrishnan: An improved data stream sum-
mary: count-min sketch and its applications. Journal of Algorithms.

Count-Min Sketch: The Proof
I With probability at least 1� �,

~F [i] � F [i] + "
X

j 6=i

F [j]:

I Xi ;j is the expected contribution of F [j] to the bucket
containing i , for any h .

E(Xi ;j) =
"

e

X

j 6=i

F [j]:

I Consider Pr(~F [i] > F [i] + "
P

j 6=i F [j]):

Pr() = Pr(8j ;F [i] + Xi ;j > F [i] + "
X

j 6=i

F [j])

= Pr(8j ;Xi ;j � eE(Xi ;j))

< e� log(1=�) = �

Count-Min Sketch: The Proof
I With probability at least 1� �,

~F [i] � F [i] + "
X

j 6=i

F [j]:

I Xi ;j is the expected contribution of F [j] to the bucket
containing i , for any h .

E(Xi ;j) =
"

e

X

j 6=i

F [j]:

I Consider Pr(~F [i] > F [i] + "
P

j 6=i F [j]):

Pr() = Pr(8j ;F [i] + Xi ;j > F [i] + "
X

j 6=i

F [j])

= Pr(8j ;Xi ;j � eE(Xi ;j))

< e� log(1=�) = �

Count-Min Sketch: The Proof
I With probability at least 1� �,

~F [i] � F [i] + "
X

j 6=i

F [j]:

I Xi ;j is the expected contribution of F [j] to the bucket
containing i , for any h .

E(Xi ;j) =
"

e

X

j 6=i

F [j]:

I Consider Pr(~F [i] > F [i] + "
P

j 6=i F [j]):

Pr() = Pr(8j ;F [i] + Xi ;j > F [i] + "
X

j 6=i

F [j])

= Pr(8j ;Xi ;j � eE(Xi ;j))

< e� log(1=�) = �

Improve Count-Min Sketch?

I Index Problem:
I A has n long bitstring and sends messages to B who wishes

to compute the ith bit.
I Needs
(n) bits of communication.

I Reduction of estimating F[i] in data stream model.
I I [1 � � � 1=(2")]
I I [i] = 1! F [i] = 2
I I [i] = 0! F [i] = 0;F [0] F [0] + 2:
I Estimating F [i] to "jjF jj = 1 accuracy reveals I [i].

Count-Min Sketch, The Challenge

1000000 items inserted 999996 items removed

Sketch of 1000 bytes

4 items lefts

I Recovering F [i] to �0:1jF j accuracy will retrieve each item
precisely.

Applications of Count-Min Sketch

I Solves many problems in the best possible/known bounds:
I Data Mining: heavy hitters, heavy hitter differences.
I Signal processing: Compressed sensing.
I Statistics: Histograms, Wavelets, Clustering, Least squares.

I Applications to other CS/EE areas:
I NLP, ML, Password checking.

I Systems, code, hardware.

Wiki: http://sites.google.com/site/countminsketch/

Applications of Count-Min Sketch

I Solves many problems in the best possible/known bounds:
I Data Mining: heavy hitters, heavy hitter differences.
I Signal processing: Compressed sensing.
I Statistics: Histograms, Wavelets, Clustering, Least squares.

I Applications to other CS/EE areas:
I NLP, ML, Password checking.

I Systems, code, hardware.

Wiki: http://sites.google.com/site/countminsketch/

Applications of Count-Min Sketch

I Solves many problems in the best possible/known bounds:
I Data Mining: heavy hitters, heavy hitter differences.
I Signal processing: Compressed sensing.
I Statistics: Histograms, Wavelets, Clustering, Least squares.

I Applications to other CS/EE areas:
I NLP, ML, Password checking.

I Systems, code, hardware.

Wiki: http://sites.google.com/site/countminsketch/

Applications of Count-Min Sketch

I Solves many problems in the best possible/known bounds:
I Data Mining: heavy hitters, heavy hitter differences.
I Signal processing: Compressed sensing.
I Statistics: Histograms, Wavelets, Clustering, Least squares.

I Applications to other CS/EE areas:
I NLP, ML, Password checking.

I Systems, code, hardware.

Wiki: http://sites.google.com/site/countminsketch/

Summary

I Broken the premise that
data has to be
I captured,
I stored,
I communicated,

analyzed in entirety.

Polynomial time/space theory -> sublinear theory
Nyquist sampling -> SubNyquist sampling

Summary

I Broken the premise that
data has to be
I captured,
I stored,
I communicated,

analyzed in entirety.

Polynomial time/space theory -> sublinear theory
Nyquist sampling -> SubNyquist sampling

What does this got to do with data streams?
Some My-story

I Raghu asked: what can you do with one pass?
I Dynamic data structures, with fast update times.

I Gibbons and Matias abstract synopsis data structures
I Can’t simulate a stack!

I Alon, Matias and Szegedy used limited independence.
I What does frequency moment got to do with databases?

I George Varghese argues high speed memory is a constraint
in IP packet analyses.
I Who needs to analyze IP packet data?

I Observation: 1="2 space to give " accuracy. Prohibitive.

What does this got to do with data streams?
Some My-story

I Raghu asked: what can you do with one pass?
I Dynamic data structures, with fast update times.

I Gibbons and Matias abstract synopsis data structures
I Can’t simulate a stack!

I Alon, Matias and Szegedy used limited independence.
I What does frequency moment got to do with databases?

I George Varghese argues high speed memory is a constraint
in IP packet analyses.
I Who needs to analyze IP packet data?

I Observation: 1="2 space to give " accuracy. Prohibitive.

What does this got to do with data streams?
Some My-story

I Raghu asked: what can you do with one pass?
I Dynamic data structures, with fast update times.

I Gibbons and Matias abstract synopsis data structures
I Can’t simulate a stack!

I Alon, Matias and Szegedy used limited independence.
I What does frequency moment got to do with databases?

I George Varghese argues high speed memory is a constraint
in IP packet analyses.
I Who needs to analyze IP packet data?

I Observation: 1="2 space to give " accuracy. Prohibitive.

What does this got to do with data streams?
Some My-story

I Raghu asked: what can you do with one pass?
I Dynamic data structures, with fast update times.

I Gibbons and Matias abstract synopsis data structures
I Can’t simulate a stack!

I Alon, Matias and Szegedy used limited independence.
I What does frequency moment got to do with databases?

I George Varghese argues high speed memory is a constraint
in IP packet analyses.
I Who needs to analyze IP packet data?

I Observation: 1="2 space to give " accuracy. Prohibitive.

What does this got to do with data streams?
Some My-story

I Raghu asked: what can you do with one pass?
I Dynamic data structures, with fast update times.

I Gibbons and Matias abstract synopsis data structures
I Can’t simulate a stack!

I Alon, Matias and Szegedy used limited independence.
I What does frequency moment got to do with databases?

I George Varghese argues high speed memory is a constraint
in IP packet analyses.
I Who needs to analyze IP packet data?

I Observation: 1="2 space to give " accuracy. Prohibitive.

Some Successful Streaming Systems

Specialized streaming systems:
I Gigascope at AT&T for IP traffic analysis.

I Two level archietecture.
Uses count-min(A) + count-min(B) = count-min(A + B).

I CMON at Sprint for IP traffic analysis.
I Hash and parallelize architecture.

Uses count-min sketch to skip over parts of the stream.
I Sawzall at Google for log data analysis

I Mapreduce-based.
Uses count-min sketch to decrease communication.

Q: General purpose streaming systems?

Some Successful Streaming Systems

Specialized streaming systems:
I Gigascope at AT&T for IP traffic analysis.

I Two level archietecture.
Uses count-min(A) + count-min(B) = count-min(A + B).

I CMON at Sprint for IP traffic analysis.
I Hash and parallelize architecture.

Uses count-min sketch to skip over parts of the stream.

I Sawzall at Google for log data analysis
I Mapreduce-based.

Uses count-min sketch to decrease communication.

Q: General purpose streaming systems?

Some Successful Streaming Systems

Specialized streaming systems:
I Gigascope at AT&T for IP traffic analysis.

I Two level archietecture.
Uses count-min(A) + count-min(B) = count-min(A + B).

I CMON at Sprint for IP traffic analysis.
I Hash and parallelize architecture.

Uses count-min sketch to skip over parts of the stream.
I Sawzall at Google for log data analysis

I Mapreduce-based.
Uses count-min sketch to decrease communication.

Q: General purpose streaming systems?

Some Successful Streaming Systems

Specialized streaming systems:
I Gigascope at AT&T for IP traffic analysis.

I Two level archietecture.
Uses count-min(A) + count-min(B) = count-min(A + B).

I CMON at Sprint for IP traffic analysis.
I Hash and parallelize architecture.

Uses count-min sketch to skip over parts of the stream.
I Sawzall at Google for log data analysis

I Mapreduce-based.
Uses count-min sketch to decrease communication.

Q: General purpose streaming systems?

Some Research Directions

1: Distributed, continual monitoring

St
1

St
2 St

i
St
n

Center C

bti

I S t
i is the set of items seen

by sensor i upto time t .
I St is the multiset union of

S t
i ’s.

I Problem:
I If jSt j > � , output 1.
I if jSt j < � � ", output 0.

I Say bt
i is total number of

bits sent b/w i and C
I Minimize

P
i b

t
i :

1: Distributed, continual monitoring

St
1

St
2 St

i
St
n

Center C

bti

I S t
i is the set of items seen

by sensor i upto time t .
I St is the multiset union of

S t
i ’s.

I Problem:
I If jSt j > � , output 1.
I if jSt j < � � ", output 0.

I Say bt
i is total number of

bits sent b/w i and C
I Minimize

P
i b

t
i :

1: Distributed, continual monitoring

St
1

St
2 St

i
St
n

Center C

bti

I S t
i is the set of items seen

by sensor i upto time t .
I St is the multiset union of

S t
i ’s.

I Problem:
I If jSt j > � , output 1.
I if jSt j < � � ", output 0.

I Say bt
i is total number of

bits sent b/w i and C
I Minimize

P
i b

t
i :

1: Distributed, continual monitoring

I When sensor sees O("
2�
k) elements, sends a bit w.p 1

k to
center.

I Center outputs 1 when O(1="2) bits received.
I O(1

"2 log(1
�)) bits suffice with prob of success 1� �.

I Independent of k .

Algorithms for distributed functional monitoring. Cormode,
Muthukrishnan, Yi. SODA 08.

1: Distributed, continual monitoring

I When sensor sees O("
2�
k) elements, sends a bit w.p 1

k to
center.

I Center outputs 1 when O(1="2) bits received.

I O(1
"2 log(1

�)) bits suffice with prob of success 1� �.
I Independent of k .

Algorithms for distributed functional monitoring. Cormode,
Muthukrishnan, Yi. SODA 08.

1: Distributed, continual monitoring

I When sensor sees O("
2�
k) elements, sends a bit w.p 1

k to
center.

I Center outputs 1 when O(1="2) bits received.
I O(1

"2 log(1
�)) bits suffice with prob of success 1� �.

I Independent of k .

Algorithms for distributed functional monitoring. Cormode,
Muthukrishnan, Yi. SODA 08.

1. Distributed, Continual Monitoring: Summary

I Statistics: Frequency
moments, Distinct counts.

I Optimization: Clustering.
I Signal processing:

Compressed sensing.

Need a fuller theory.
Connections to Slepian-Wolf, network coding.

2. Probabilistic Streams

I Each stream update is a
random variable Xi ,
1 � i � n , Xi 2 f0; 1g,
identically distributed.

I The query is to estimate
Pr[
P

i Xi � c]:

2. Probabilistic Streams

I Each stream update is a
random variable Xi ,
1 � i � n , Xi 2 f0; 1g,
identically distributed.

I The query is to estimate
Pr[
P

i Xi � c]:

Probabilistic Streams Contd

Berry-Esseen Theorem

Let X1; : : : ;Xn be i.i.d. random variables with
I E(Xi) = 0;E(X 2) = �2, and E(jX j3) = �:

Let Yn =
P

i Xi=n with
I Fn the cdf of Yn

p
n=�

� the cdf of the std normal dist.

Then there exists a positive C such that for all x and n ,

jFn(x)� �(x)j � C�

�3pn
:

Probabilistic Streams Contd

I We have
P

i Xi � c implies
Yn =

P
i Xi=n � c=n .

I Then Pr(
P

i Xi � c) =
Fn(c=�

p
n).

I This can be approximated
by �(c=�

p
n):

I To finish up. Estimate �
and its impact on overall
error. Extend to more
general Xi ’s.

Probabilistic Streams Contd

I We have
P

i Xi � c implies
Yn =

P
i Xi=n � c=n .

I Then Pr(
P

i Xi � c) =
Fn(c=�

p
n).

I This can be approximated
by �(c=�

p
n):

I To finish up. Estimate �
and its impact on overall
error. Extend to more
general Xi ’s.

Probabilistic Streams Contd

I We have
P

i Xi � c implies
Yn =

P
i Xi=n � c=n .

I Then Pr(
P

i Xi � c) =
Fn(c=�

p
n).

I This can be approximated
by �(c=�

p
n):

I To finish up. Estimate �
and its impact on overall
error. Extend to more
general Xi ’s.

Probabilistic Streams Contd

I We have
P

i Xi � c implies
Yn =

P
i Xi=n � c=n .

I Then Pr(
P

i Xi � c) =
Fn(c=�

p
n).

I This can be approximated
by �(c=�

p
n):

I To finish up. Estimate �
and its impact on overall
error. Extend to more
general Xi ’s.

3. Stochastic Streams

I Input is a stochastic stream X1; : : : ;Xn , each Xi is drawn
from known distribution D . n is known.

I Problem: Stop at input t and output Xt .
I Goal: maximize Xt . Formally,

max
E(Xt)

E(OPT) = E(maxi Xi)

I Observe:
I Can a priori look at the dist of maxi Xi .
I Not the same as finding maxi Xi :

3. Stochastic Streams

I Input is a stochastic stream X1; : : : ;Xn , each Xi is drawn
from known distribution D . n is known.

I Problem: Stop at input t and output Xt .

I Goal: maximize Xt . Formally,

max
E(Xt)

E(OPT) = E(maxi Xi)

I Observe:
I Can a priori look at the dist of maxi Xi .
I Not the same as finding maxi Xi :

3. Stochastic Streams

I Input is a stochastic stream X1; : : : ;Xn , each Xi is drawn
from known distribution D . n is known.

I Problem: Stop at input t and output Xt .
I Goal: maximize Xt . Formally,

max
E(Xt)

E(OPT) = E(maxi Xi)

I Observe:
I Can a priori look at the dist of maxi Xi .
I Not the same as finding maxi Xi :

3. Stochastic Streams

I Input is a stochastic stream X1; : : : ;Xn , each Xi is drawn
from known distribution D . n is known.

I Problem: Stop at input t and output Xt .
I Goal: maximize Xt . Formally,

max
E(Xt)

E(OPT) = E(maxi Xi)

I Observe:
I Can a priori look at the dist of maxi Xi .
I Not the same as finding maxi Xi :

3. Stochastic Streams Contd

I Algorithm:
I X � = maxi Xi .
I m : median of X �, ie., Pr(X � < m) � 1=2.
I � is the smallest t such that Xt > m .

� is the answer.

I Algorithm finds t such that E(Xt)=E(OPT) � 1=2.
Prophet inequality.

Many basic problems on stochastic streams still open.

3. Stochastic Streams Contd

I Algorithm:
I X � = maxi Xi .
I m : median of X �, ie., Pr(X � < m) � 1=2.
I � is the smallest t such that Xt > m .

� is the answer.

I Algorithm finds t such that E(Xt)=E(OPT) � 1=2.
Prophet inequality.

Many basic problems on stochastic streams still open.

Conclusions

I Talk summary:
I Indexing problem.
I count-min sketch and

applications.
I classical streaming.

I New directions:
I Distributed, continual.
I Probabilistic.
I Stochastic.

I Comments:
I Need convincing systems and applications to motivate new

directions.
I Left out: window streams, rich queries and data,

MapReduce

Conclusions

I Talk summary:
I Indexing problem.
I count-min sketch and

applications.
I classical streaming.

I New directions:
I Distributed, continual.
I Probabilistic.
I Stochastic.

I Comments:
I Need convincing systems and applications to motivate new

directions.

I Left out: window streams, rich queries and data,
MapReduce

Conclusions

I Talk summary:
I Indexing problem.
I count-min sketch and

applications.
I classical streaming.

I New directions:
I Distributed, continual.
I Probabilistic.
I Stochastic.

I Comments:
I Need convincing systems and applications to motivate new

directions.
I Left out: window streams, rich queries and data,

MapReduce

