Data Streams: Where to Go?
PODS 11, Tutorial

S. Muthu Muthukrishnan
Familiar Puzzle: Missing Number

- A shows B numbers $1, \ldots, n$ but in a permuted order and leaves out one of the numbers.
Familiar Puzzle: Missing Number

- A shows B numbers $1, \ldots, n$ but in a permuted order and leaves out one of the numbers.
- B has to determine the missing number.
Familiar Puzzle: Missing Number

- A shows B numbers $1, \ldots, n$ but in a permuted order and leaves out one of the numbers.
- B has to determine the missing number.
- **Key:** B has only $2 \log n$ bits.
Familiar Puzzle: Missing Number

- **A** shows **B** numbers 1, \ldots, \(n \) but in a permuted order and leaves out one of the numbers.
- **B** has to determine the **missing number**.

- **Key:** **B** has only \(2 \log n \) bits.

- **Solution:**
 B maintains the running sum \(s \) of numbers seen.
 Missing number is \(\frac{n(n+1)}{2} - s \).
A New Puzzle: One Word Median

I see items $i_1; i_2; \ldots$ arrive in a stream.

I has to maintain the median m_j of the items $i_1; \ldots; i_j$.

Each i_j generated independently and randomly from some unknown distribution D over integers $[1; n]$.

Key: A is allowed to store only one word of memory (of $\log n$ bits).

Solution. Maintain j.

If $i_{j+1} > j$, $j+1$.

If $i_{j+1} < j$, $j+1$.
A New Puzzle: One Word Median

- A sees items i_1, i_2, \ldots arrive in a stream.
- A has to maintain the median m_j of the items i_1, \ldots, i_j.
A New Puzzle: One Word Median

- \(A \) sees items \(i_1, i_2, \ldots \) arrive in a stream.
- \(A \) has to maintain the median \(m_j \) of the items \(i_1, \ldots, i_j \).

- Each \(i_j \) generated independently and randomly from some unknown distribution \(\mathcal{D} \) over integers \([1, n]\).
A New Puzzle: One Word Median

- A sees items i_1, i_2, \ldots arrive in a stream.
- A has to maintain the median m_j of the items i_1, \ldots, i_j.

- Each i_j generated independently and randomly from some unknown distribution D over integers $[1, n]$.

- **Key:** A is allowed to store only one word of memory (of $\log n$ bits).
A New Puzzle: One Word Median

- A sees items i_1, i_2, \ldots arrive in a stream.
- A has to maintain the median m_j of the items i_1, \ldots, i_j.
- Each i_j generated independently and randomly from some unknown distribution \mathcal{D} over integers $[1, n]$.
- **Key:** A is allowed to store only one word of memory (of $\log n$ bits).

- **Solution.** Maintain μ_j.

 If $i_{j+1} > \mu_j$, $\mu_{j+1} \leftarrow \mu_j + 1$.

 If $i_{j+1} < \mu_j$, $\mu_{j+1} \leftarrow \mu_j - 1$.
A Basic Problem: Indexing

Imagine a virtual array $F[1 \cdots n]$.

- Updates: $F[i] \leftarrow F[i] + \text{value}$,
- Query: $F[i] = \text{value}$.
A Basic Problem: Indexing

Imagine a virtual array $F[1 \cdots n]$,

- Imagine a virtual array $F[1 \cdots n]$,
A Basic Problem: Indexing

- Imagine a virtual array $F[1 \ldots n]$,
- Updates: $F[i] \text{++}$, $F[i] \text{--}$.
Count-Min Sketch

- For each update $F[i]++$,
 - for each $j = 1, \ldots, \log(1/\delta)$, update $cm[h_j(i)]++$.

```plaintext
cm array

1          +1
2          +1
log(1/\delta) +1

1 2  e/\epsilon

h_1(i) h_2(i)
```

Estimate $\sim F[i] = \min_{j=1; \ldots; \log(1/\delta)} cm[h_j(i)]$.

123
Count-Min Sketch

- For each update $F[i] + +$,
 - for each $j = 1, \ldots, \log(1/\delta)$, update $cm[h_j(i)] + +$.

- Estimate $\tilde{F}(i) = \min_{j=1,\ldots,\log(1/\delta)} cm[h_j(i)]$.
Count-Min Sketch

- Claim: \(F[i] \leq \tilde{F}[i] \).
- Claim: With probability at least \(1 - \delta \),
 \(\tilde{F}[i] \leq F[i] + \varepsilon \sum_{j \neq i} F[j] \).
- Space used is \(O(\frac{1}{\varepsilon} \log(\frac{1}{\delta})) \).
- Time per update is \(O(\log(\frac{1}{\delta})) \).
 Indep of \(n \).

Count-Min Sketch: The Proof

- With probability at least $1 - \delta$,

$$
\tilde{F}[i] \leq F[i] + \varepsilon \sum_{j \neq i} F[j].
$$
Count-Min Sketch: The Proof

- With probability at least $1 - \delta$,
 \[\tilde{F}[i] \leq F[i] + \varepsilon \sum_{j \neq i} F[j]. \]

- $X_{i,j}$ is the expected contribution of $F[j]$ to the bucket containing i, for any h.
 \[E(X_{i,j}) = \frac{\varepsilon}{e} \sum_{j \neq i} F[j]. \]
Count-Min Sketch: The Proof

- With probability at least $1 - \delta$,
 $$\tilde{F}[i] \leq F[i] + \varepsilon \sum_{j \neq i} F[j].$$

- $X_{i,j}$ is the expected contribution of $F[j]$ to the bucket containing i, for any h.
 $$E(X_{i,j}) = \frac{\varepsilon}{e} \sum_{j \neq i} F[j].$$

- Consider $\Pr(\tilde{F}[i] > F[i] + \varepsilon \sum_{j \neq i} F[j])$:
 $$\Pr(\tilde{F}[i] > F[i] + \varepsilon \sum_{j \neq i} F[j])$$
 $$= \Pr(\forall j, F[i] + X_{i,j} > F[i] + \varepsilon \sum_{j \neq i} F[j])$$
 $$= \Pr(\forall j, X_{i,j} \geq e E(X_{i,j}))$$
 $$< e^{-\log(1/\delta)} = \delta$$
Improve Count-Min Sketch?

- **Index Problem:**
 - A has n long bitstring and sends messages to B who wishes to compute the ith bit.
 - Needs $\Omega(n)$ bits of communication.

- Reduction of estimating $F[i]$ in data stream model.
 - $I[1 \cdots 1/(2\epsilon)]$
 - $I[i] = 1 \rightarrow F[i] = 2$
 - $I[i] = 0 \rightarrow F[i] = 0; F[0] \leftarrow F[0] + 2.$
 - Estimating $F[i]$ to $\epsilon \|F\| = 1$ accuracy reveals $I[i]$.
Count-Min Sketch, The Challenge

- 1000000 items inserted
- 999996 items removed
- Sketch of 1000 bytes
- 4 items lefts

Recovering $F[i]$ to $\pm 0.1|F|$ accuracy will retrieve each item precisely.
Applications of Count-Min Sketch

- Solves many problems in the best possible/known bounds:
 - Data Mining: heavy hitters, heavy hitter differences.
 - Signal processing: Compressed sensing.
Applications of Count-Min Sketch

- Solves many problems in the best possible/known bounds:
 - Data Mining: heavy hitters, heavy hitter differences.
 - Signal processing: Compressed sensing.

- Applications to other CS/EE areas:
 - NLP, ML, Password checking.
Applications of Count-Min Sketch

- Solves many problems in the best possible/known bounds:
 - Data Mining: heavy hitters, heavy hitter differences.
 - Signal processing: Compressed sensing.

- Applications to other CS/EE areas:
 - NLP, ML, Password checking.

- Systems, code, hardware.

Wiki: http://sites.google.com/site/countminsketch/
Applications of Count-Min Sketch

- Solves many problems in the best possible/known bounds:
 - Data Mining: heavy hitters, heavy hitter differences.
 - Signal processing: Compressed sensing.

- Applications to other CS/EE areas:
 - NLP, ML, Password checking.

- Systems, code, hardware.

Wiki: http://sites.google.com/site/countminsketch/
Summary

- Broken the premise that data has to be:
 - captured,
 - stored,
 - communicated,
 analyzed in entirety.
Summary

- Broken the premise that data has to be captured, stored, communicated, analyzed in entirety.

Polynomial time/space theory -> sublinear theory
Nyquist sampling -> SubNyquist sampling
What does this got to do with data streams?

Some My-story

- Raghu asked: what can you do with **one pass**?
 - Dynamic data structures, with fast update times.
What does this got to do with data streams?
Some My-story

- Raghu asked: what can you do with one pass?
 - Dynamic data structures, with fast update times.
- Gibbons and Matias abstract synopsis data structures
 - Can’t simulate a stack!
What does this got to do with data streams?
Some My-story

- Raghu asked: what can you do with one pass?
 - Dynamic data structures, with fast update times.
- Gibbons and Matias abstract synopsis data structures
 - Can’t simulate a stack!
- Alon, Matias and Szegedy used limited independence.
 - What does frequency moment got to do with databases?
What does this got to do with data streams?
Some My-story

- Raghu asked: what can you do with one pass?
 - Dynamic data structures, with fast update times.
- Gibbons and Matias abstract synopsis data structures
 - Can’t simulate a stack!
- Alon, Matias and Szegedy used limited independence.
 - What does frequency moment got to do with databases?
- George Varghese argues high speed memory is a constraint in IP packet analyses.
 - Who needs to analyze IP packet data?
What does this got to do with data streams?
Some My-story

- Raghu asked: what can you do with one pass?
 - Dynamic data structures, with fast update times.
- Gibbons and Matias abstract synopsis data structures
 - Can’t simulate a stack!
- Alon, Matias and Szegedy used limited independence.
 - What does frequency moment got to do with databases?
- George Varghese argues high speed memory is a constraint
 in IP packet analyses.
 - Who needs to analyze IP packet data?
- Observation: $1/\varepsilon^2$ space to give ε accuracy. Prohibitive.
Some Successful Streaming Systems

Specialized streaming systems:

- Gigascope at AT&T for IP traffic analysis.
 - Two level architecture.
 - Uses $\text{count-min}(A) + \text{count-min}(B) = \text{count-min}(A + B)$.

- CMON at Sprint for IP traffic analysis.
 - Hash and parallelize architecture.
- Sawzall at Google for log data analysis
 - Mapreduce-based.
 - Uses $\text{count-min}(A)$ to decrease communication.
Some Successful Streaming Systems

Specialized streaming systems:

- Gigascope at AT&T for IP traffic analysis.
 - Two level architecture.
 - Uses $\text{count-min}(A) + \text{count-min}(B) = \text{count-min}(A + B)$.

- CMON at Sprint for IP traffic analysis.
 - Hash and parallelize architecture.
 - Uses count-min sketch to skip over parts of the stream.
Some Successful Streaming Systems

Specialized streaming systems:

- Gigascope at AT&T for IP traffic analysis.
 - Two level architecture.
 - Uses $\text{count-min}(A) + \text{count-min}(B) = \text{count-min}(A + B)$.

- CMON at Sprint for IP traffic analysis.
 - Hash and parallelize architecture.
 - Uses count-min sketch to skip over parts of the stream.

- Sawzall at Google for log data analysis
 - Mapreduce-based.
 - Uses count-min sketch to decrease communication.
Some Successful Streaming Systems

Specialized streaming systems:

- Gigascope at AT&T for IP traffic analysis.
 - Two level architecture.
 - Uses $\text{count-min}(A) + \text{count-min}(B) = \text{count-min}(A + B)$.

- CMON at Sprint for IP traffic analysis.
 - Hash and parallelize architecture.
 - Uses count-min sketch to skip over parts of the stream.

- Sawzall at Google for log data analysis
 - Mapreduce-based.
 - Uses count-min sketch to decrease communication.

Q: General purpose streaming systems?
Some Research Directions
1: Distributed, continual monitoring

- S^t_i is the set of items seen by sensor i upto time t.
- S_t is the multiset union of S^t_i's.
1: Distributed, continual monitoring

- \(S_i^t \) is the set of items seen by sensor \(i \) upto time \(t \).
- \(S_t \) is the multiset union of \(S_i^t \)'s.

Problem:
- If \(|S_t| > \tau \), output 1.
- If \(|S_t| < \tau - \varepsilon \), output 0.
1: Distributed, continual monitoring

- S_i^t is the set of items seen by sensor i upto time t.
- S_t is the multiset union of S_i^t's.

Problem:
- If $|S_t| > \tau$, output 1.
- If $|S_t| < \tau - \varepsilon$, output 0.

Say b_i^t is total number of bits sent b/w i and C.
Minimize $\sum_i b_i^t$.
When sensor sees $O\left(\frac{\varepsilon^2 \tau}{k}\right)$ elements, sends a bit w.p $\frac{1}{k}$ to center.
1: Distributed, continual monitoring

- When sensor sees $O\left(\frac{\varepsilon^2 \tau}{k}\right)$ elements, sends a bit w.p $\frac{1}{k}$ to center.
- Center outputs 1 when $O(1/\varepsilon^2)$ bits received.
1: Distributed, continual monitoring

- When sensor sees $O\left(\frac{\varepsilon^2 T}{k}\right)$ elements, sends a bit w.p. $\frac{1}{k}$ to center.
- Center outputs 1 when $O(1/\varepsilon^2)$ bits received.
- $O\left(\frac{1}{\varepsilon^2 \log\left(\frac{1}{\delta}\right)}\right)$ bits suffice with prob of success $1 - \delta$.
- Independent of k.

1. Distributed, Continual Monitoring: Summary

- Statistics: Frequency moments, Distinct counts.
- Optimization: Clustering.
- Signal processing: Compressed sensing.

Need a fuller theory.
Connections to Slepian-Wolf, network coding.
2. Probabilistic Streams

Each stream update is a random variable X_i, $1 \leq i \leq n$, $X_i \in \{0, 1\}$, identically distributed.
2. Probabilistic Streams

- Each stream update is a random variable X_i, $1 \leq i \leq n$, $X_i \in \{0, 1\}$, identically distributed.

- The query is to estimate $\Pr[\sum_i X_i \leq c]$.
Berry-Esseen Theorem

Let X_1, \ldots, X_n be i.i.d. random variables with

- $E(X_i) = 0$, $E(X^2) = \sigma^2$, and $E(|X|^3) = \rho$.

Let $Y_n = \frac{\sum_i X_i}{n}$ with

- F_n the cdf of $Y_n\sqrt{n}/\sigma$

- ϕ the cdf of the std normal dist.

Then there exists a positive C such that for all x and n,

$$|F_n(x) - \phi(x)| \leq \frac{C\rho}{\sigma^3\sqrt{n}}.$$
We have $\sum_i X_i \leq c$ implies $Y_n = \sum_i X_i / n \leq c/n$.
We have \(\sum_i X_i \leq c \) implies
\[Y_n = \frac{\sum_i X_i}{n} \leq \frac{c}{n}. \]

Then
\[\Pr(\sum_i X_i \leq c) = F_n\left(\frac{c}{\sigma \sqrt{n}}\right). \]
We have $\sum_i X_i \leq c$ implies $Y_n = \frac{\sum_i X_i}{n} \leq \frac{c}{n}$.

Then $\Pr(\sum_i X_i \leq c) = F_n(c/\sigma \sqrt{n})$.

This can be approximated by $\phi(c/\sigma \sqrt{n})$.
We have $\sum_i X_i \leq c$ implies $Y_n = \frac{\sum_i X_i}{n} \leq c/n$.

Then $\Pr(\sum_i X_i \leq c) = F_n(c/\sigma \sqrt{n})$.

This can be approximated by $\phi(c/\sigma \sqrt{n})$.

To finish up. Estimate σ and its impact on overall error. Extend to more general X_i's.
3. Stochastic Streams

Input is a stochastic stream $X_1; \ldots; X_n$, each X_i is drawn from known distribution D. n is known.

Problem: Stop at input t and output X_t.

Goal: maximize X_t. Formally,

$$\max E(X_t) = E(OPT) = E(\max_i X_i)$$

Observe:

- Can a priori look at the dist of $\max_i X_i$.
- Not the same as finding $\max_i X_i$:

3. Stochastic Streams

Input is a stochastic stream X_1, \ldots, X_n, each X_i is drawn from known distribution D. n is known.

Problem: Stop at input t and output X_t.
3. Stochastic Streams

- Input is a stochastic stream X_1, \ldots, X_n, each X_i is drawn from known distribution D. n is known.
- Problem: Stop at input t and output X_t.
- Goal: maximize X_t. Formally,

$$
\max \frac{E(X_t)}{E(OPT)} = E(\max_i X_i)
$$
3. Stochastic Streams

- Input is a stochastic stream X_1, \ldots, X_n, each X_i is drawn from known distribution D. n is known.
- Problem: Stop at input t and output X_t.
- Goal: maximize X_t. Formally,

$$\max \frac{E(X_t)}{E(OPT)} = E(\max_i X_i)$$

- Observe:
 - Can \textit{a priori} look at the dist of $\max_i X_i$.
 - Not the same as finding $\max_i X_i$.

3. Stochastic Streams Contd

- **Algorithm:**
 - \(X^* = \max_i X_i \).
 - \(m \): median of \(X^* \), ie., \(\Pr(X^* < m) \approx 1/2 \).
 - \(\tau \) is the smallest \(t \) such that \(X_t > m \).
 - \(\tau \) is the answer.

Prophet inequality. Many basic problems on stochastic streams still open.
3. Stochastic Streams Contd

- Algorithm:
 - \(X^* = \max_i X_i \).
 - \(m \): median of \(X^* \), ie., \(\Pr(X^* < m) \approx 1/2 \).
 - \(\tau \) is the smallest \(t \) such that \(X_t > m \).
 \(\tau \) is the answer.

- Algorithm finds \(t \) such that \(E(X_t)/E(OPT) \geq 1/2 \).
 Prophet inequality.

Many basic problems on stochastic streams still open.
Conclusions

- **Talk summary:**
 - Indexing problem.
 - count-min sketch and applications.
 - classical streaming.

- **New directions:**
 - Distributed, continual.
 - Probabilistic.
 - Stochastic.

Comments:

- Need convincing systems and applications to motivate new directions.
- Left out: window streams, rich queries and data, MapReduce.
Conclusions

- **Talk summary:**
 - Indexing problem.
 - count-min sketch and applications.
 - classical streaming.

- **New directions:**
 - Distributed, continual.
 - Probabilistic.
 - Stochastic.

- **Comments:**
 - Need convincing systems and applications to motivate new directions.
Conclusions

- Talk summary:
 - Indexing problem.
 - count-min sketch and applications.
 - classical streaming.

- New directions:
 - Distributed, continual.
 - Probabilistic.
 - Stochastic.

- Comments:
 - Need convincing systems and applications to motivate new directions.
 - Left out: window streams, rich queries and data, MapReduce